Curso de Machine Learning
100% Online
200 horas
260€
Curso de Machine Learning
    Curso de Machine Learning

    Curso de Machine Learning

    100% Online
    8 ECTS
    200 horas
    260€
    Seguridad y confianza en tus pagos online.

    Presentación

    En la era de la información, el análisis de datos se ha convertido en una herramienta estratégica fundamental para las organizaciones. El crecimiento exponencial en la cantidad de datos generados ha creado una necesidad imperante de extraer conocimientos valiosos de estos vastos conjuntos de información. En este contexto, el aprendizaje automático, también conocido como machine learning, ha surgido como un enfoque poderoso y eficiente para el descubrimiento de patrones, la toma de decisiones y la generación de predicciones precisas. Gracias a este Curso de Machine Learning podrás adquirir una comprensión profunda de los procesos y técnicas claves necesarios para llevar a cabo análisis sofisticados de datos. Además , contarás con un equipo de profesionales especializados en la materia.
    Qs World University Rankings

    Universidades colaboradoras

    Para qué te prepara
    Este Curso de Machine Learning te prepara para utilizar técnicas avanzadas de machine learning en la extracción de conocimiento a partir de grandes volúmenes de datos. Aprenderás a aplicar algoritmos de aprendizaje automático para clasificación, clustering y sistemas de recomendación. Además, adquirirás habilidades en redes neuronales y deep learning, lo que te permitirá abordar tareas más complejas de análisis y predicción.
    Objetivos
    - Comprender los conceptos básicos de la minería de datos y el aprendizaje automático. - Asimilar el proceso KDD y las técnicas de data mining. - Explorar las aplicaciones y el impacto del aprendizaje automático en diversas áreas. - Diferenciar entre los diferentes algoritmos y enfoques de aprendizaje automático. - Desarrollar habilidades en clustering y sistemas de recomendación. - Dominar el uso de redes neuronales y deep learning para tareas de análisis de datos. - Aplicar estrategias de aprendizaje y entrenamiento de redes neuronales profundas.
    A quién va dirigido
    Este Curso de Machine Learning está diseñado para profesionales y estudiantes interesados en adquirir habilidades en el campo del aprendizaje automático. También es adecuado para aquellos que desean ampliar sus conocimientos en minería de datos y explorar el potencial del análisis de datos en diferentes contextos. No se requieren conocimientos previos de programación.
    Salidas Profesionales
    Tras completar este Curso de Machine Learning, estarás preparado para acceder a diversas salidas laborales en el campo del análisis de datos y la inteligencia artificial. Podrás trabajar como científico de datos, ingeniero de machine learning, analista de datos o consultor en empresas de diferentes sectores, como tecnología, finanzas, marketing y salud.
    Temario

    UNIDAD DIDÁCTICA 1. MINERÍA DE DATOS O DATA MINING Y EL APRENDIZAJE AUTOMÁTICO

    1. Introducción a la minería de datos y el aprendizaje automático
    2. Proceso KDD
    3. Modelos y Técnicas de Data Mining
    4. Áreas de aplicación
    5. Minería de textos y Web Mining
    6. Data mining y marketing

    UNIDAD DIDÁCTICA 2. INTRODUCCIÓN AL MACHINE LEARNING

    1. Introducción
    2. Clasificación de algoritmos de aprendizaje automático
    3. Ejemplos de aprendizaje automático
    4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
    5. Tipos de algoritmos de aprendizaje automático
    6. El futuro del aprendizaje automático

    UNIDAD DIDÁCTICA 3. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING

    1. Introducción
    2. Algoritmos

    UNIDAD DIDÁCTICA 4. SISTEMAS DE RECOMENDACIÓN

    1. Introducción
    2. Filtrado colaborativo
    3. Clusterización
    4. Sistemas de recomendación híbridos

    UNIDAD DIDÁCTICA 5. CLASIFICACIÓN

    1. Clasificadores
    2. Algoritmos

    UNIDAD DIDÁCTICA 6. REDES NEURONALES Y DEEP LEARNING

    1. Componentes
    2. Aprendizaje

    UNIDAD DIDÁCTICA 7. SISTEMAS DE ELECCIÓN

    1. Introducción
    2. El proceso de paso de DSS a IDSS
    3. Casos de aplicación

    UNIDAD DIDÁCTICA 8. DEEP LEARNING CON PYTHON, KERAS Y TENSORFLOW

    1. Aprendizaje profundo
    2. Entorno de Deep Learning con Python
    3. Aprendizaje automático y profundo

    UNIDAD DIDÁCTICA 9. SISTEMAS NEURONALES

    1. Redes neuronales
    2. Redes profundas y redes poco profundas

    UNIDAD DIDÁCTICA 10. REDES DE UNA SOLA CAPA

    1. Perceptrón de una capa y multicapa
    2. Ejemplo de perceptrón

    UNIDAD DIDÁCTICA 11. REDES MULTICAPA

    1. Tipos de redes profundas
    2. Trabajar con TensorFlow y Python

    UNIDAD DIDÁCTICA 12. ESTRATEGIAS DE APRENDIZAJE

    1. Entrada y salida de datos
    2. Entrenar una red neuronal
    3. Gráficos computacionales
    4. Implementación de una red profunda
    5. El algoritmo de propagación directa
    6. Redes neuronales profundas multicapa
    Titulación
    Titulación Universitaria:
    Diploma Universidad Católica de Murcia
    Claustro

    Rafael Marín Sastre

    Ingeniero técnico en informática de sistemas por la Universidad de Granada (UGR).  

    Apasionado de la informática y de las nuevas tecnologías, cuenta con 10 años de experiencia y vocación en el ámbito TIC y la programación de software. Es experto en desarrollo web, programación de aplicaciones, análisis de datos, big data, ciberseguridad y diseño y experiencia de usuario (UX/UI). 

    Alan Sastre

    Ocupa el puesto de CTO (Chief Technology Officer) y formador. Diseña e imparte formación en diferentes áreas como desarrollo web, bases de datos, big data, business intelligence y ciencia de datos. Además, trabaja diaramente con las tecnologías del ecosistema Java, C# y Phyton.

    Dani Pérez Lima

    Global IT support manager de una multinacional con más de 20 años de experiencia en el mundo IT, además de un apasionado de la virtualización de sistemas y de la transmisión de conocimiento en el ámbito de la tecnología.

    José Domingo Muñoz Rodríguez

    Ingeniero informático, profesor de secundaria de ASIR y coorganizador de OpenStack Sevilla con dilata experiencia en sistemas GNU/Linux. Administra clouds públicos y gestiona un cloud privado con OpenStack.

    Juan Benito Pacheco

    Como tech lead, ayuda a organizaciones a escalar sus servicios e infraestructura. Lleva más de 5 años programando tanto en front-end como back-end con JavaScript, Angular, Python o Django, entre otras tecnologías.

    Juan Diego Pérez Jiménez

    Profesor de Ciclos Formativos de Grado Superior de Informática. Más de 10 años creando páginas web y enseñando cómo hacerlas, cómo usar bases de datos y todo lo relacionado con la informática.

    Solicitar información