2195€
Máster en Formación Permanente en Big Data Deportivo
100% Online
60 ECTS
12 meses
2195€
Presentación
Gracias a este Master en Big Data Deportivo conseguirás obtener un amplio abanico de conocimientos y habilidades para aprovechar el potencial de análisis de datos en el ámbito deportivo y general. A lo largo del master se adquirirán diferentes competencias en el big data, almacenamiento, análisis y procesamiento de datos haciendo uso de diferentes herramientas tecnológicas, tratamiento de la visión artificial… Además, aprenderás a aplicar técnicas de visualización de datos y focalizar todos estos conocimientos hacia el ámbito deportivo. Al finalizar el master, se estará preparado para aplicar el Big Data en la toma de decisiones, la mejora del rendimiento deportivo y la generación de ventajas competitivas en el mundo del deporte.
Universidades colaboradoras
Para qué te prepara
Con este Master en Big Data Deportivo estarás preparado para utilizar el poder del análisis de datos para mejorar el rendimiento deportivo, la toma de decisiones estratégicas y obtener una ventaja competitiva en el mundo deportivo. Para esta formación se requiere un nivel básico de conocimientos en análisis de datos y programación, y se beneficiarán aquellos con experiencia o interés en deportes y tecnología.
Objetivos
- Comprender la relevancia del Big Data y el Business Intelligence en la toma de decisiones estratégicas.
- Utilizar bases de datos NoSQL, como MongoDB, y bases de datos SQL, como MySQL,.
- Dominar los lenguajes Python y R para Data Science.
- Aprender a realizar mediciones mediante la analítica web haciendo uso de diferentes técnicas y estrategias de análisis.
- Analizar de forma óptima los datos a nivel deportivo para la mejora de rendimiento y optimización deportiva.
- Trabajar la visión artificial con Python y OpenCV así como nociones básicas de inteligencia artificial.
A quién va dirigido
El Master en formación permanente en Big Data D Master en Big Data Deportivo está dirigido a profesionales del ámbito deportivo o científico y estudiantes interesados en combinar su pasión por el deporte con habilidades en el análisis de datos. Está diseñado para aquellos que deseen adquirir conocimientos avanzados en el campo del Big Data aplicado al ámbito deportivo.
Salidas Profesionales
Este Master en Big Data Deportivo te ofrece diversas salidas laborales en el ámbito deportivo de análisis y gestión de datos, como por ejemplo: analista de datos deportivos en clubes deportivos o agencias; consultor deportivo en Big Data; desarrollador de software deportivo para el análisis de datos; investigador en Big Data contribuyendo a su avance…
Temario
MÓDULO 1. BIG DATA & BUSINESS INTELLIGENCE FUNDAMENTALS
UNIDAD DIDÁCTICA 1. LA REVOLUCIÓN DE LOS DATOS MASIVOS: BIG DATA Y THICK DATA
- ¿Qué es Big Data?
- ¿Y Thick Data? ¿Cuál es el matiz para diferenciar ambos términos?
- El gran auge del big data
- La importancia de almacenar y extraer información
- ¿Cual es el papel de las fuentes de datos?
- Soluciones novedosas gracias a la selección de datos
- Naturaleza de las fuentes de datos Big Data
UNIDAD DIDÁCTICA 2. TOMA DE DECISIONES INTELIGENTES
- Thick Data, el valor de lo cualitativo. Entender emociones humanas, intenciones y sentimientos
- Fases en un proyecto de Big Data
- Big Data enfocado a los negocios
- Apoyo del Big Data en el proceso de toma de decisiones
- Toma de decisiones operativas
UNIDAD DIDÁCTICA 3. CÓMO HACER CRECER UN NEGOCIO A TRAVÉS DEL BIG DATA Y SUS APLICACIONES
- Marketing estratégico y Big Data
- Open data
- Ejemplo de uso de Open Data
- IoT (Internet of Things-Internet de las cosas)
UNIDAD DIDÁCTICA 4. BIG DATA EN DIFERENTES SECTORES
- Relación entre inteligencia artificial y big data
- IA y Big Data combinados
- El papel del Big Data en IA
- Big Data en salud
- Necesidad de Big Data en la asistencia sanitaria
- Retos del big data en salud
- Big Data y People Analytics en RRHH
UNIDAD DIDÁCTICA 5. BUSINESS INTELLIGENCE Y LA SOCIEDAD DE LA INFORMACIÓN
- Definiendo el concepto de Business Intelligence y sociedad de la información
- Arquitectura de una solución Business Intelligence
- Business Intelligence en los departamentos de la empresa
- Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
- Sistemas Operacionales y Procesos ETL en un sistema de BI
- Ventajas y Factores de Riesgos del Business Intelligence
UNIDAD DIDÁCTICA 6. PRINCIPALES PRODUCTOS DE BUSINESS INTELLIGENCE
- Cuadros de Mando Integrales (CMI)
- Sistemas de Soporte a la Decisión (DSS)
- Sistemas de Información Ejecutiva (EIS)
UNIDAD DIDÁCTICA 7. MINERÍA DE DATOS O DATA MINING Y EL APRENDIZAJE AUTOMÁTICO
- Introducción a la minería de datos y el aprendizaje automático
- Proceso KDD
- Modelos y Técnicas de Data Mining
- Áreas de aplicación
- Minería de Textos y Web Mining
- Data mining y marketing
UNIDAD DIDÁCTICA 8. DATAMART: CONCEPTO DE BASE DE DATOS DEPARTAMENTAL
- Aproximación al concepto de DataMart
- Bases de datos OLTP
- Bases de Datos OLAP
- MOLAP, ROLAP & HOLAP
- Herramientas para el desarrollo de cubos OLAP
UNIDAD DIDÁCTICA 9. DATAWAREHOUSE O ALMACEN DE DATOS CORPORATIVOS
- Visión General: ¿Por qué DataWarehouse?
- Estructura y Construcción
- Fases de implantación
- Características
- Data Warehouse en la nube
UNIDAD DIDÁCTICA 10. INTERNET DE LAS COSAS
- Contexto Internet de las Cosas (IoT)
- ¿Qué es IoT?
- Elementos que componen el ecosistema IoT
- Arquitectura IoT
- Dispositivos y elementos empleados
- Ejemplos de uso
- Retos y líneas de trabajo futuras
UNIDAD DIDÁCTICA 11. STORYTELLING
- ¿Qué es el Data Storytelling?
- Elementos clave del Data Storytelling
- ¿Por qué es importante el Data Storytelling?
- ¿Cómo hacer Data Storytelling?
UNIDAD DIDÁCTICA 12. ECOSISTEMA HADOOP
- ¿Qué es Hadoop? Relación con Big Data
- Instalación y configuración de insfraestructura y ecosistema Hadoop
- Sistema de archivos HDFS
- MapReduce con Hadoop
- Apache Hive
- Apache Hue
- Apache Spark
MÓDULO 2. DATA SCIENCE: ALMACENAMIENTO, ANÁLISIS Y PROCESAMIENTO DE DATOS
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA CIENCIA DE DATOS
- ¿Qué es la ciencia de datos?
- Herramientas necesarias para el científico de datos
- Data Science & Cloud Computing
- Aspectos legales en Protección de Datos
UNIDAD DIDÁCTICA 2. BASES DE DATOS RELACIONALES
- Introducción
- El modelo relacional
- Lenguaje de consulta SQL
- MySQL Una base de datos relacional
UNIDAD DIDÁCTICA 3. BASES DE DATOS NOSQL Y EL ALMACENAMIENTO ESCALABLE
- ¿Qué es una base de datos NoSQL?
- Bases de datos Relaciones Vs Bases de datos NoSQL
- Tipo de Bases de datos NoSQL Teorema de CAP
- Sistemas de Bases de datos NoSQL
UNIDAD DIDÁCTICA 4. INTRODUCCIÓN A UN SISTEMA DE BASES DE DATOS NOSQL: MONGODB
- ¿Qué es MongoDB?
- Funcionamiento y uso de MongoDB
- Primeros pasos con MongoDB: Instalación y shell de comandos
- Creando nuestra primera Base de Datos NoSQL: Modelo e Inserción de Datos
- Actualización de datos en MongoDB: Sentencias set y update
- Trabajando con índices en MongoDB para optimización de datos
- Consulta de datos en MongoDB
UNIDAD DIDÁCTICA 5. WEKA Y DATA MINING
- ¿Qué es Weka?
- Técnicas de Data Mining en Weka
- Interfaces de Weka
- Selección de atributos
UNIDAD DIDÁCTICA 6. PENTAHO
- Una aproximación a PENTAHO
- Soluciones que ofrece PENTAHO
- MongoDB & PENTAHO
- Hadoop & PENTAHO
- Weka & PENTAHO
UNIDAD DIDÁCTICA 7. R COMO HERRAMIENTA PARA BIG DATA
- Introducción a R
- ¿Qué necesitas?
- Tipos de datos
- Estadística Descriptiva y Predictiva con R
- Integración de R en Hadoop
UNIDAD DIDÁCTICA 8. PRE-PROCESAMIENTO & PROCESAMIENTO DE DATOS
- Obtención y limpieza de los datos (ETL)
- Inferencia estadística
- Modelos de regresión
- Pruebas de hipótesis
UNIDAD DIDÁCTICA 9. ANÁLISIS DE LOS DATOS
- Inteligencia Analítica de negocios
- La teoría de grafos y el análisis de redes sociales
- Presentación de resultados
MÓDULO 3. ANÁLISIS DE DATOS CON PYTHON
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL ANÁLISIS DE DATOS
- ¿Qué es el análisis de datos?
UNIDAD DIDÁCTICA 2. LIBRERÍAS PARA EL ANÁLISIS DE DATOS: NUMPY, PANDAS Y MATPLOTLIB
- Análisis de datos con NumPy
- Pandas
- Matplotlib
UNIDAD DIDÁCTICA 3. FILTRADO Y EXTRACCIÓN DE DATOS
- Cómo usar loc en Pandas
- Cómo eliminar una columna en Pandas
UNIDAD DIDÁCTICA 4. PIVOT TABLES
- Pivot tables en pandas
UNIDAD DIDÁCTICA 5. GROUPBY Y FUNCIONES DE AGREGACIÓN
- El grupo de Pandas
UNIDAD DIDÁCTICA 6. FUSIÓN DE DATAFRAMES
- Python Pandas fusionando marcos de datos
UNIDAD DIDÁCTICA 7. VISUALIZACIÓN DE DATOS CON MATPLOTLIB Y CON SEABORN
- Matplotlib
- Seaborn
UNIDAD DIDÁCTICA 8. INTRODUCCIÓN AL MACHINE LEARNING
- Aprendizaje automático
UNIDAD DIDÁCTICA 9. REGRESIÓN LINEAL Y REGRESIÓN LOGÍSTICA
- Regresión lineal
- Regresión logística
UNIDAD DIDÁCTICA 10. ÁRBOL DE DECISIONES
- Estructura de árbol
UNIDAD DIDÁCTICA 11. NAIVE BAYES
- Algoritmo de Naive Bayes
- Tipos de Naive Bayes
UNIDAD DIDÁCTICA 12. SUPPORT VECTOR MACHINES (SVM)
- Máquinas de vectores soporte (Support Vector Machine-SVN)
- ¿Cómo funciona SVM?
- Núcleos SVM
- Construcción de clasificador en Scikit-learn
UNIDAD DIDÁCTICA 13. KNN
- K-nearest Neighbors (KNN)
- Implementación de Python del algoritmo KNN
UNIDAD DIDÁCTICA 14. PRINCIPAL COMPONENT ANALYSIS (PCA)
- Análisis de componentes principales
UNIDAD DIDÁCTICA 15. RANDOM FOREST
- Algortimo de random forest
MÓDULO 4. VISUALIZACIÓN DE DATOS
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA VISUALIZACIÓN DE DATOS
- ¿Qué es la visualización de datos?
- Importancia y herramientas de la visualización de datos
- Visualización de datos: Principios básicos
UNIDAD DIDÁCTICA 2. TABLEAU
- ¿Qué es Tableau? Usos y aplicaciones
- Tableau Server: Arquitectura y Componentes
- Instalación Tableau
- Espacio de trabajo y navegación
- Conexiones de datos en Tableau
- Tipos de filtros en Tableau
- Ordenación de datos, grupos, jerarquías y conjuntos
- Tablas y gráficos en Tableau
UNIDAD DIDÁCTICA 3. D3 (DATA DRIVEN DOCUMENTS)
- Fundamentos D3
- Instalación D3
- Funcionamiento D3
- SVG
- Tipos de datos en D3
- Diagrama de barras con D3
- Diagrama de dispersión con D3
UNIDAD DIDÁCTICA 4. LOOKER STUDIO (GOOGLE DATA STUDIO)
- Visualización de datos
- Tipologías de gráficos
- Fuentes de datos
- Creación de informes
UNIDAD DIDÁCTICA 5. QLIKVIEW
- Instalación y arquitectura
- Carga de datos
- Informes
- Transformación y modelo de datos
- Análisis de datos
UNIDAD DIDÁCTICA 6. POWER BI
- Introducción a Power BI
- Instalación de Power BI
- Modelado de datos
- Visualización de datos
- Dashboards
- Uso compartido de datos
UNIDAD DIDÁCTICA 7. CARTO
- CartoDB
- ¿Qué es CARTO?
- Carga y uso de datos. Tipos de análisis
- Programación de un visor con la librería CARTO.js
- Uso de ejemplos y ayudas de la documentación de la API
MÓDULO 5. ANALÍTICA WEB
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA ANALÍTICA WEB
- ¿Qué es la analítica web?
- Establecimiento de objetivos y KPIs
- Métricas principales y avanzadas
- Objetivos y ventajas de medir
- Plan de medición
UNIDAD DIDÁCTICA 2. GOOGLE ANALYTICS 4
- Introducción a Google Analytics 4
- Interfaz
- Métricas y dimensiones
- Informes básicos
- Filtros
- Segmentos
- Eventos
- Informes personalizados
- Comportamiento de los usuarios e interpretación de datos
UNIDAD DIDÁCTICA 3. GOOGLE TAG MANAGER
- Introducción a GTM
- Implementación con GTM
- Medición con GTM
- Uso de Debug/Preview Mode
UNIDAD DIDÁCTICA 4. MODELOS DE ATRIBUCIÓN
- La atribución
- Multicanalidad
- Customer Journey
- Principales modelos de atribución
- Modelos de atribución personalizados
UNIDAD DIDÁCTICA 5. CREACIÓN DE DASHBORAD CON GOOGLE DATA STUDIO
- Planificación del Dashboard
- Características del Dashboard
- Introducción a Data Studio
- Conectores
- Tipos de gráficos
- Personalización de informes
- Elementos de control
- Dimensiones y métricas
- Campos Calculados
- Compartir informes
UNIDAD DIDÁCTICA 6. ANALÍTICA WEB ORIENTADA AL SEO
- Introducción al SEO
- Historia de los motores de búsqueda
- Componentes de un motor de búsqueda
- Organización de resultados en un motor de búsqueda
- La importancia del contenido
- El concepto de autoridad en Internet
- Campaña SEO
UNIDAD DIDÁCTICA 7. ANALÍTICA WEB ORIENTADA AL SEM
- Introducción al SEM
- Principales conceptos en SEM
- Sistema de pujas y Calidad del anuncio
- Primer contacto con Google Ads
- Creación de anuncios con calidad
- Indicadores clave de rendimiento en SEM
UNIDAD DIDÁCTICA 8. ANALÍTICA WEB ORIENTADA A LAS REDES SOCIALES
- Análisis del tráfico en redes sociales
- Fijar objetivos en redes sociales
- Youtube
- Tik tok
UNIDAD DIDÁCTICA 9. TÉCNICAS Y ESTRATEGIAS
- Usabilidad
- Mapas de calor
- Grabaciones de sesiones de usuario
- Ordenación de tarjetas
- Test A/B
- Test multivariante
- KPI, indicadores clave de rendimiento
- Cambios a realizar para optimizar una página web
UNIDAD DIDÁCTICA 10. OTRAS HERRAMIENTAS PARA ANALÍTICA WEB
- Hotjar
- Microsoft Power BI
- Google Search Console
- Matomo
- Awstats
- Chartbeat
- Adobe Analytics
UNIDAD DIDÁCTICA 11. COOKIES Y TECNOLOGÍAS DE SEGUIMIENTO
- ¿Qué son las cookies?
- Tipos de cookies
- GDPR
- Herramientas para manejar el consentimiento de cookies
MÓDULO 6. ANÁLISIS DE DATOS A NIVEL DEPORTIVO
UNIDAD DIDÁCTICA 1. TECNOLOGÍA Y DEPORTE
- La revolución tecnológica
- Medios de comunicación y marketing digital
- Tecnología en la industria deportiva
- La tecnología en los eventos deportivos
UNIDAD DIDÁCTICA 2. ANÁLISIS DE DATOS EN EL DEPORTE
- Analítica y biometría deportiva
- Data Mining aplicado al deporte
- Sistema BI aplicado al deporte
- Análisis por Envoltura de Datos (DEA) aplicada al deporte
- Datos deportivos y transformación del mercado
UNIDAD DIDÁCTICA 3. PROVEEDORES DE DATOS DEPORTIVOS
UNIDAD DIDÁCTICA 4. ANÁLISIS INDIVIDUALES, COLECTIVOS Y DE LOS RIVALES
UNIDAD DIDÁCTICA 5. ANÁLISIS DE DATOS Y RENDIMIENTO
UNIDAD DIDÁCTICA 6. INTRODUCCIÓN AL SCOUTING EN EL FÚTBOL
- ¿Qué es el Scouting?
- Importancia del Scouting
- Perfil del responsable de video
UNIDAD DIDÁCTICA 7. HERRAMIENTAS EMPLEADAS EN EL SCOUTING
- Elementos de hardware y software
- Elementos de captación y reproducción de video
- Programas para el videoanálisis de partidos
UNIDAD DIDÁCTICA 8. ANÁLISIS DE ESQUEMAS TÁCTICOS
- ¿Qué se puede analizar de un equipo?
- La táctica
- Metodología de la preparación táctica
- Ocupación racional del terreno
- Las transiciones en el fútbol
- Algunas tácticas o acciones ofensivas con balón
- El posicionamiento defensivo
- Fundamentos del sistema de juego
UNIDAD DIDÁCTICA 9. ELABORACIÓN DE INFORMES
- Introducción a los informes
- Recogida de datos e información
- Ejemplo de ficha de seguimiento a un jugador
- Ejemplo de ficha de scouting de un partido
UNIDAD DIDÁCTICA 10. TOMA DE DECISIONES
- Toma de decisiones del entrenador
- La táctica deportiva
- La estrategia deportiva
MÓDULO 7. PROGRAMACIÓN DE VISIÓN ARTIFICIAL CON PYTHON Y OPENCV
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN E INSTALACIÓN DE OPENCV
- Descripción general OpenCV
- Instalación OpenCV para Python en Windows
- Instalación OpenCV para Python en Linux
- Anaconda y OpenCV
UNIDAD DIDÁCTICA 2. MANEJO DE FICHEROS, CÁMARAS E INTERFACES GRÁFICAS
- Manejo de archivos
- Leer una imagen con OpenCV
- Mostrar imagen con OpenCV
- Guardar una imagen con OpenCV
- Operaciones aritméticas en imágenes usando OpenCV
- Funciones de dibujo
UNIDAD DIDÁCTICA 3. TRATAMIENTO DE IMÁGENES
- Redimensión de imágenes
- Erosión de imágenes
- Desenfoque de imágenes
- Bordeado de imágenes
- Escala de grises en imágenes
- Escalado, rotación, desplazamiento y detección de bordes
- Erosión y dilatación de imágenes
- Umbrales simples
- Umbrales adaptativos
- Umbral de Otsu
- Contornos de imágenes
- Incrustación de imágenes
- Intensidad en imágenes
- Registro de imágenes
- Extracción de primer plano
- Operaciones morfológicas en imágenes
- Pirámide de imágen
UNIDAD DIDÁCTICA 4. HISTOGRAMAS Y TEMPLATE MATCHING
- Analizar imágenes usando histogramas
- Ecualización de histogramas
- Template matching
- Detección de campos en documentos usando Template matching
UNIDAD DIDÁCTICA 5. COLORES Y ESPACIOS DE COLOR
- Espacios de color en OpenCV
- Cambio de espacio de color
- Filtrado de color
- Denoising de imágenes en color
- Visualizar una imagen en diferentes espacios de color
UNIDAD DIDÁCTICA 6. DETECCIÓN DE CARAS Y EXTRACCIÓN DE CARACTERÍSTICAS
- Detección de líneas
- Detección de círculos
- Detectar esquinas (Método Shi-Tomasi)
- Detectar esquinas (método Harris)
- Encontrar círculos y elipses
- Detección de caras y sonrisas
UNIDAD DIDÁCTICA 7. APRENDIZAJE AUTOMÁTICO
- Vecino más cercano (K-Nearest Neighbour)
- Agrupamiento de K-medias (K-Means Clustering)
MÓDULO 8. PROYECTO FIN DE MÁSTER
Titulación
Titulación Universitaria:
Solicitar información