2195€
Máster en Formación Permanente en Inteligencia de Negocios y Análisis de Datos
100% Online
60 ECTS
12 meses
2195€
Presentación
El Master en Inteligencia de Negocios y Análisis de Datos es una formación altamente relevante en el contexto actual, donde el uso provechoso de los datos se ha convertido en una ventaja competitiva para las organizaciones. Con el crecimiento exponencial de la información, el Big Data se ha vuelto fundamental, y este programa proporciona las herramientas necesarias para comprender su naturaleza, almacenamiento y análisis. Además, se abordan las técnicas más avanzadas de Business Intelligence y se explora el potencial del aprendizaje automático. Con una combinación única de teoría y práctica, este Master prepara a los estudiantes para enfrentar los desafíos y oportunidades del entorno empresarial actual.
Universidades colaboradoras
Para qué te prepara
El Master en Inteligencia de Negocios y Análisis de Datos te prepara para enfrentar los retos del entorno empresarial actual, dotándote de las habilidades para recopilar, analizar y transformar grandes volúmenes de datos en información valiosa para la toma de decisiones estratégicas. Aprenderás a utilizar técnicas avanzadas de análisis de datos, como el Big Data, la minería de datos, la visualización de datos y el aprendizaje automático.
Objetivos
- Repasar los fundamentos del Big Data
- Conocer los conceptos del Business Intelligence, Datawarehouse y las herramientas De Visualización.
- Utilizar el lenguaje de programación Python para analizar los conjuntos de datos.
- Profundizar en el Data Science, empleado los lenguajes de programación Python y R para ello.
- Estudiar otras herramientas tales como Tableau y Power BI.
A quién va dirigido
El Master en Inteligencia de Negocios y Análisis de Datos está dirigido a profesionales y graduados universitarios que deseen adquirir conocimientos y su aplicación en el ámbito empresarial. También es adecuado para aquellos que trabajan en áreas relacionadas con la toma de decisiones estratégicas, el marketing, la gestión de proyectos y la consultoría.
Salidas Profesionales
El Master en Inteligencia de Negocios y Análisis de Datos ofrece salidas donde podrás desempeñarte como analista de datos, científico de datos, consultor de Business Intelligence, gestor de proyectos de análisis de datos, especialista en marketing digital, entre otros. Además, de contemplar sectores como el financiero, el comercio electrónico, la salud e Industria
Temario
MÓDULO 1. BIG DATA ANALYTICS TOOLS
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL BIG DATA
- ¿Qué es Big Data?
- La era de las grandes cantidades de información. Historia del big data
- La importancia de almacenar y extraer información
- Big Data enfocado a los negocios
- Open Data
- Información pública
- IoT (Internet of Things-Internet de las cosas)
UNIDAD DIDÁCTICA 2. FUENTES DE DATOS
- Definición y relevancia de la selección de las fuentes de datos
- Naturaleza de las fuentes de datos Big Data
UNIDAD DIDÁCTICA 3. OPEN DATA
- Definición, Beneficios y Características
- Ejemplo de uso de Open Data
UNIDAD DIDÁCTICA 4. FASES DE UN PROYECTO DE BIG DATA
- Diagnóstico inicial
- Diseño del proyecto
- Proceso de implementación
- Monitorización y control del proyecto
- Responsable y recursos disponibles
- Calendarización
- Alcance y valoración económica del proyecto
UNIDAD DIDÁCTICA 5. BIG DATA Y MARKETING
- Apoyo del Big Data en el proceso de toma de decisiones
- Toma de decisiones operativas
- Marketing estratégico y Big Data
- Nuevas tendencias en management
UNIDAD DIDÁCTICA 6. DEL BIG DATA AL LINKED OPEN DATA
- Concepto de web semántica
- Linked Data Vs Big Data
- Lenguaje de consulta SPARQL
UNIDAD DIDÁCTICA 7. BASES DE DATOS NOSQL Y EL ALMACENAMIENTO ESCALABLE
- ¿Qué es una base de datos NoSQL?
- Bases de datos Relaciones Vs Bases de datos NoSQL
- Tipo de Bases de datos NoSQL. Teorema de CAP
- Sistemas de Bases de datos NoSQL
UNIDAD DIDÁCTICA 8. INTRODUCCIÓN A UN SISTEMA DE BASES DE DATOS NOSQL. MONGODB
- ¿Qué es MongoDB?
- Funcionamiento y uso de MongoDB
- Primeros pasos con MongoDB. Instalación y shell de comandos
- Creando nuestra primera Base de Datos NoSQL.Modelo e Inserción de Datos
- Actualización de datos en MongoDB. Sentencias set y update
- Trabajando con índices en MongoDB para optimización de datos
- Consulta de datos en MongoDB
UNIDAD DIDÁCTICA 9. ECOSISTEMA HADOOP
- ¿Qué es Hadoop? Relación con Big Data
- Instalación y configuración de insfraestructura y ecosistema Hadoop
- Sistema de archivos HDFS
- MapReduce con Hadoop
- Apache Hive
- Apache Hue
- Apache Spark
UNIDAD DIDÁCTICA 10. WEKA Y DATA MINING
- ¿Qué es Weka?
- Técnicas de Data Mining en Weka
- Interfaces de Weka
- Selección de atributos
UNIDAD DIDÁCTICA 11. PENTAHO
- Una aproximación a Pentaho
- Soluciones que ofrece Pentaho
- MongoDB & Pentaho
- Hadoop & Pentaho
- Weka & Pentaho
MÓDULO 2. BUSINESS INTELLIGENCE, DATAWAREHOUSE Y HERRAMIENTAS DE VISUALIZACIÓN
UNIDAD DIDÁCTICA 1. BUSINESS INTELLIGENCE Y LA SOCIEDAD DE LA INFORMACIÓN
- Definiendo el concepto de Business Intelligence y sociedad de la información
- Arquitectura de una solución de Business Intelligence
- Business Intelligence en los departamentos de la empresa
- Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
- Sistemas operacionales y Procesos ETL en un sistema de BI
- Ventajas y Factores de Riesgos del Business Intelligence
UNIDAD DIDÁCTICA 2. PRINCIPALES PRODUCTOS DE BUSINESS INTELLIGENCE
- Cuadros de Mando Integrales (CMI)
- Sistemas de Soporte a la Decisión (DSS)
- Sistemas de Información Ejecutiva (EIS)
UNIDAD DIDÁCTICA 3. MINERÍA DE DATOS O DATA MINING Y EL APRENDIZAJE AUTOMÁTICO
- Introducción a la minería de datos y el aprendizaje automático
- Proceso KDD
- Modelos y Técnicas de Data Mining
- Áreas de aplicación
- Minería de textos y Web Mining
- Data mining y marketing
UNIDAD DIDÁCTICA 4. DATAMART. CONCEPTO DE BASE DE DATOS DEPARTAMENTAL
- Aproximación al concepto de DataMart
- Procesos de extracción, transformación y carga de datos (ETL)
- Data Warehou
- Herramientas de Explotación
- Herramientas para el desarrollo de cubos OLAP
UNIDAD DIDÁCTICA 5. DATAWAREHOUSE O ALMACÉN DE DATOS CORPORATIVOS
- Visión General. ¿Por qué DataWarehouse?
- Estructura y Construcción
- Fases de implantación
- Características
- Data Warehouse en la nube
UNIDAD DIDÁCTICA 6. INTELIGENCIA DE NEGOCIO Y HERRAMIENTAS DE ANALÍTICA
- Tipos de herramientas para BI
- Productos comerciales para BI
- Productos Open Source para BI
- Beneficios de las herramientas de BI
UNIDAD DIDÁCTICA 7. INTRODUCCIÓN A LA VISUALIZACIÓN DE DATOS
- ¿Qué es la visualización de datos?
- Importancia y herramientas de la visualización de datos
- Visualización de datos: Principios básicos
UNIDAD DIDÁCTICA 8. TABLEAU
- ¿Qué es Tableau? Usos y aplicaciones
- Tableau Server: Arquitectura y Componentes
- Instalación Tableau
- Espacio de trabajo y navegación
- Conexiones de datos en Tableau
- Tipos de filtros en Tableau
- Ordenación de datos, grupos, jerarquías y conjuntos
- Tablas y gráficos en Tableau
UNIDAD DIDÁCTICA 9. D3 (DATA DRIVEN DOCUMENTS)
- Fundamentos D3
- Instalación D3
- Funcionamiento D3
- SVG
- Tipos de datos en D3
- Diagrama de barras con D3
- Diagrama de dispersión con D3
UNIDAD DIDÁCTICA 10. GOOGLE DATA
- Google Data Studio
UNIDAD DIDÁCTICA 11. QLIKVIEW
- Instalación y arquitectura
- Carga de datos
- Informes
- Transformación y modelo de datos
- Análisis de datos
UNIDAD DIDÁCTICA 12. POWER BI
- Introducción a Power BI
- Instalación de Power BI
- Modelado de datos
- Visualización de datos
- Dashboards
- Uso compartido de datos
UNIDAD DIDÁCTICA 13. CARTO
- CartoDB
MÓDULO 3. ANÁLISIS DE DATOS CON PYTHON
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL ANÁLISIS DE DATOS
- ¿Qué es el análisis de datos?
UNIDAD DIDÁCTICA 2. LIBRERÍAS PARA EL ANÁLISIS DE DATOS: NUMPY PANDAS Y MATPLOTLIB
- Análisis de datos con NumPy
- Pandas
- Matplotlib
UNIDAD DIDÁCTICA 3. FILTRADO Y EXTRACCIÓN DE DATOS
- Cómo usar loc en Pandas
- Cómo eliminar una columna en Pandas
UNIDAD DIDÁCTICA 4. PIVOT TABLES
- Pivot tables en pandas
UNIDAD DIDÁCTICA 5. GROUPBY Y FUNCIONES DE AGREGACIÓN
- El grupo de pandas
UNIDAD DIDÁCTICA 6. FUSIÓN DE DATAFRAMES
- Python Pandas fusionando marcos de datos
UNIDAD DIDÁCTICA 7. VISUALIZACIÓN DE DATOS CON MATPLOTLIB Y CON SEABORN
- Matplotlib
- Seaborn
UNIDAD DIDÁCTICA 8. INTRODUCCIÓN AL MACHINE LEARNING
- Aprendizaje automático
UNIDAD DIDÁCTICA 9. REGRESIÓN LINEAL Y REGRESIÓN LOGÍSTICA
- Regresión lineal
- Regresión logística
UNIDAD DIDÁCTICA 10. ÁRBOL DE DECISIONES
- Estructura de árbol
UNIDAD DIDÁCTICA 11. NAIVE BAYES
- Algoritmo de Naive bayes
- Tipos de Naive Bayes
UNIDAD DIDÁCTICA 12. SUPPORT VECTOR MACHINES (SVM)
- Máquinas de vectores soporte (Support Vector Machine-SVN
- 2.¿Cómo funciona SVM?
- Núcleos SVM
- Construcción de clasificador en Scikit-learn
UNIDAD DIDÁCTICA 13. KNN
- K-nearest Neighbors (KNN)
- Implementación de Python del algoritmo KNN
UNIDAD DIDÁCTICA 14. PRINCIPAL COMPONENT ANALYSIS (PCA)
- Análisis de componentes principales
UNIDAD DIDÁCTICA 15. RANDOM FOREST
- Algoritmo de random forest
MÓDULO 4. DATA SCIENCE: ALMACENAMIENTO, ANÁLISIS Y PROCESAMIENTO DE DATOS
UNIDAD DIDÁCTICA 1.INTRODUCCIÓN A LA CIENCIA DE DATOS
- ¿Qué es la ciencia de datos?
- Herramientas necesarias para el científico de datos
- Data Science & Cloud Computing
- Aspectos legales en Protección de Datos
UNIDAD DIDÁCTICA 2.BASES DE DATOS RELACIONALES
- Introducción
- El modelo relacional
- Lenguaje de consulta SQL
- MySQL Una base de datos relacional
UNIDAD DIDÁCTICA 3. BASES DE DATOS NOSQL Y EL ALMACENAMIENTO ESCALABLE
- ¿Qué es una base de datos NoSQL?
- Bases de datos Relaciones Vs Bases de datos NoSQL
- Tipo de Bases de datos NoSQL Teorema de CAP
- Sistemas de Bases de datos NoSQL
UNIDAD DIDÁCTICA 4. INTRODUCCIÓN A UN SISTEMA DE BASES DE DATOS NOSQL: MONGODB
- ¿Qué es MongoDB?
- Funcionamiento y uso de MongoDB
- Primeros pasos con MongoDB: Instalación y shell de comandos
- Creando nuestra primera Base de Datos NoSQL: Modelo e Inserción de Datos
- Actualización de datos en MongoDB: Sentencias set y update
- Trabajando con índices en MongoDB para optimización de datos
- Consulta de datos en MongoDB
UNIDAD DIDÁCTICA 5. WEKA Y DATA MINING
- ¿Qué es Weka?
- Técnicas de Data Mining en Weka
- Interfaces de Weka
- Selección de atributos
UNIDAD DIDÁCTICA 6. PENTAHO
- Una aproximación a PENTAHO
- Soluciones que ofrece PENTAHO
- MongoDB & PENTAHO
- Hadoop & PENTAHO
- Weka & PENTAHO
UNIDAD DIDÁCTICA 7. R COMO HERRAMIENTA PARA BIG DATA
- Introducción a R
- ¿Qué necesitas?
- Tipos de datos
- Estadística Descriptiva y Predictiva con R
- Integración de R en Hadoop
UNIDAD DIDÁCTICA 8. PRE-PROCESAMIENTO & PROCESAMIENTO DE DATOS
- Obtención y limpieza de los datos (ETL)
- Inferencia estadística
- Modelos de regresión
- Pruebas de hipótesis
UNIDAD DIDÁCTICA 9. ANÁLISIS DE LOS DATOS
- Inteligencia Analítica de negocios
- La teoría de grafos y el análisis de redes sociales
- Presentación de resultados
MÓDULO 5. DATA SCIENCE Y PROGRAMACIÓN ESTADÍSTICA CON PYTHON Y R
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA CIENCIA DE DATOS
- ¿Qué es la ciencia de datos?
- Herramientas necesarias para el científico de datos
- Data Science & Cloud Compunting
- Aspectos legales en Protección de Datos
UNIDAD DIDÁCTICA 2. BASES DE DATOS RELACIONALES
- Introducción
- El modelo relacional
- Lenguaje de consulta SQL
- MySQL. Una base de datos relacional
UNIDAD DIDÁCTICA 3. PYTHON Y EL ANÁLISIS DE DATOS
- Introducción a Python
- ¿Qué necesitas?
- Librerías para el análisis de datos en Python
- MongoDB, Hadoop y Python. Dream Team del Big Data
UNIDAD DIDÁCTICA 4. R COMO HERRAMIENTA PARA BIG DATA
- Introducción a R
- ¿Qué necesitas?
- Tipos de datos
- Estadística Descriptiva y Predictiva con R
- Integración de R en Hadoop
UNIDAD DIDÁCTICA 5. PRE-PROCESAMIENTO & PROCESAMIENTO DE DATOS
- Obtención y limpieza de los datos (ETL)
- Inferencia estadística
- Modelos de regresión
- Pruebas de hipótesis
UNIDAD DIDÁCTICA 6. ANÁLISIS DE LOS DATOS
- Inteligencia Analítica de negocios
- La teoría de grafos y el análisis de redes sociales
- Presentación de resultados
MÓDULO 6. INTRODUCCIÓN APRENDIZAJE AUTOMÁTICO (MACHINE LEARNING)
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL MACHINE LEARNING
- Introducción
- Clasificación de algoritmos de aprendizaje automático
- Ejemplos de aprendizaje automático
- Diferencias entre el aprendizaje automático y el aprendizaje profundo
- Tipos de algoritmos de aprendizaje automático
- El futuro del aprendizaje automático
UNIDAD DIDÁCTICA 2. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING
- Introducción
- Algoritmos
UNIDAD DIDÁCTICA 3. SISTEMAS DE RECOMENDACIÓN
- Introducción
- Filtrado colaborativo
- Clusterización
- Sistemas de recomendación híbridos
UNIDAD DIDÁCTICA 4. CLASIFICACIÓN
- Clasificadores
- Algoritmos
UNIDAD DIDÁCTICA 5. REDES NEURONALES Y DEEP LEARNING
- Componentes
- Aprendizaje
UNIDAD DIDÁCTICA 6. SISTEMAS DE ELECCIÓN
- Introducción
- El proceso de paso de DSS a IDSS
- Casos de aplicación
MÓDULO 7. HERRAMIENTAS BI. TABLEAU, POWER BI Y QLIKVIEW
UNIDAD DIDÁCTICA 1. HERRAMIENTA TABLEAU
- Herramienta de Tableau
UNIDAD DIDÁCTICA 2. MINERÍA DE DATOS
- Recogida de datos de diferentes fuentes
- Introducción al editor de consultas
- Trabajo con consultas
- Introducción al editor avanzado
UNIDAD DIDÁCTICA 3. SELECCIÓN, TRANSFORMACIÓN Y ANÁLISIS DE DATOS
- Manipulación de columnas
- Manipulación de filas
- Realizar columnas calculadas
- Dependencias de las consultas
- Ejemplo completo de carga de datos
UNIDAD DIDÁCTICA 4. TÉCNICAS DE VISUALIZACIÓN, MODELIZACIÓN Y EVALUACIÓN DE DATOS CON POWER BI
- Visualización de datos
- Crear gráficos con los datos seleccionados
- Configuración de los gráficos
- Filtrado de los gráficos
- Enlazar y desenlazar gráficos dentro de la misma hoja
- Visualización de medidas
- Uso de marcadores
- Creación de grupos de datos
- Importación de gráficos
UNIDAD DIDÁCTICA 5. APLICACIÓN DE LA INFORMACIÓN PARA EL DESARROLLO DEL NEGOCIO
- Introducción al servicio Power BI
- Publicación de datos en el servicio de Power BI
- Configuración para poder publicar en móvil
- Funcionalidades del servicio de Power BI
- Procesos de actualización de datos
- Establecer datos para visualizar en cuadros de mando
- Necesidades de la empresa sobre qué gráficos crear
UNIDAD DIDÁCTICA 6. CASOS PRÁCTICOS DE DIFERENTES ÁREAS DE LA EMPRESA
- Compras y ventas
- Producción
- Contabilidad
- Servicios
- Caso RRHH
UNIDAD DIDÁCTICA 7. HERRAMIENTA QLIKVIEW
- Instalación y arquitectura
- Carga de datros
- Informes
- Transformación y modelo de datos
- Análisis de datos
- Caso RRHH
MÓDULO 8. POWER BI
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A POWER BI
- ¿Qué es Power BI?
- Funciones de Power BI
- Versiones de Power BI
- Roles de Power BI
- Planificación de proyectos con Power BI
UNIDAD DIDÁCTICA 2. INSTALACIÓN DE POWER BI
- Instalación y puesta en marcha
- Conexión de datos a Power BI
- Filtrado de datos
- Vista de datos
UNIDAD DIDÁCTICA 3. MODELADO DE DATOS
- Introducción al modelado de datos
- Creación de medidas
- Creación y relación entre tablas
- Creación de columnas y medidas calculadas
- Dinamizar columnas
- Fórmulas de consulta
UNIDAD DIDÁCTICA 4. VISUALIZACIÓN DE DATOS
- Creación de gráficas
- Tablas dinámicas
- Segmentación de datos
- Uso de objetos visuales
- Formas y cuadros de texto
- Imágenes
- Matrices y tablas
- Cómo crear un velocímetro
- Mapas
- Slicers
- Cómo modificar colores
UNIDAD DIDÁCTICA 5. DASHBOARDS
- Uso del Dashboard
- Compartir Dashboards
- Añadir Widgets
- Cómo crear reportes
- Ajustes del panel
- Preguntas y respuestas del Dashboard
UNIDAD DIDÁCTICA 6. USO COMPARTIDO DE DATOS
- Exportar datos de Power BI a Excel
- Exportar Dashboards
- Crear paquetes de contenido
- Presentación de informes
- Cómo públicar y compartir informes
- Introducción a Power BI mobile
MÓDULO 9. PROYECTO FINAL DE MÁSTER
Titulación
Titulación Universitaria:
Solicitar información