Máster en Formación Permanente en Data Science y Análisis de Datos Complejos
100% Online
12 meses
2195€
Máster en Formación Permanente en Data Science y Análisis de Datos Complejos
    Máster en Formación Permanente en Data Science y Análisis de Datos Complejos

    Máster en Formación Permanente en Data Science y Análisis de Datos Complejos

    100% Online
    60 ECTS
    12 meses
    2195€
    Seguridad y confianza en tus pagos online.

    Presentación

    En la era digital actual, los datos se han convertido en un recurso valioso y abundante en prácticamente todos los aspectos de la sociedad y los negocios. La disponibilidad de grandes volúmenes de datos complejos provenientes de diversas fuentes ha creado la necesidad de profesionales altamente capacitados en la ciencia de datos y el análisis de datos complejos. Estos profesionales desempeñan un papel crucial en el descubrimiento de información significativa, la toma de decisiones informadas y la generación de ventajas competitivas y este Máster de Data Science y Análisis de Datos Complejos te ayudará a poder enfrentarte a los desafíos asociados con el procesamiento y análisis de datos complejos. Además, contarás con un equipo de profesionales especializados en la materia.
    Qs World University Rankings

    Universidades colaboradoras

    Para qué te prepara
    Este Máster de Data Science y Análisis de Datos Complejos te prepara para convertirte en un experto en el análisis de datos complejos, a través de una formación integral en técnicas avanzadas, herramientas y metodologías, estarás preparado para aplicar tus habilidades en la resolución de problemas reales, la toma de decisiones basada en datos y la generación de ideas innovadoras en diversos entornos empresariales.
    Objetivos
    - Comprender los conceptos fundamentales de la ciencia de datos y su aplicación en el análisis de datos complejos. - Adquirir habilidades técnicas en el manejo de herramientas y tecnologías utilizadas en la ciencia de datos. - Aplicar técnicas de aprendizaje automático y minería de datos para descubrir patrones y tendencias. - Desarrollar habilidades en la visualización de datos y la comunicación efectiva de los resultados del análisis. - Diseñar proyectos de análisis de datos, desde la recopilación de datos hasta la interpretación de los resultados. - Dominar técnicas de optimización y modelado estadístico en la resolución de problemas de datos complejos.
    A quién va dirigido
    Este Máster de Data Science y Análisis de Datos Complejos está diseñado para profesionales y graduados en áreas relacionadas con la ciencia de datos, la estadística, la informática y disciplinas afines. También es adecuado para aquellos que deseen ampliar sus habilidades en el análisis de datos complejos y aspiran a desempeñarse como científicos o analistas de datos.
    Salidas Profesionales
    Gracias a este Máster de Data Science y Análisis de Datos Complejos podrás desempeñar roles clave en el campo de la ciencia de datos pudiendo trabajar como científico de datos, analista de datos, consultor de negocios, investigador, líderes de proyectos o especialistas en inteligencia empresarial en empresas de diversos sectores, como tecnología, finanzas, salud o marketing.
    Temario

    MÓDULO 1. TRANSFORMACIÓN DIGITAL

    UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL LA TRANSFORMACIÓN DIGITAL

    1. Introducción a la transformación digital
    2. Concepto de innovación
    3. Concepto de tecnología
    4. Tipología de la tecnología
    5. Punto de vista de la ventaja competitiva
    6. Según su disposición en la empresa
    7. Desde el punto de vista de un proyecto
    8. Otros tipos de tecnología
    9. La innovación tecnológica
    10. Competencias básicas de la innovación tecnológica
    11. El proceso de innovación tecnológica
    12. Herramientas para innovar
    13. Competitividad e innovación

    UNIDAD DIDÁCTICA 2. LA SOCIEDAD 3.0

    1. Filosofía Web 3.0 y su impacto en el mundo empresarial
    2. Socialización de la Web
    3. Adaptación del mundo empresarial a las Nuevas tecnologías

    UNIDAD DIDÁCTICA 3. NUEVO ECOSISTEMA DIGITAL

    1. Community Manager
    2. Chief Data Officer
    3. Data Protection Officer
    4. Data Scientist
    5. Otros perfiles
    6. Desarrollo de competencias informáticas
    7. El Papel del CEO como líder en la transformación

    UNIDAD DIDÁCTICA 4. NUEVOS MODELOS DE NEGOCIO EN EL ENTORNO DIGITAL

    1. La transición digital del modelo de negocio tradicional
    2. Nuevos modelos de negocio
    3. Freemium
    4. Modelo Long Tail
    5. Modelo Nube y SaaS
    6. Modelo Suscripción
    7. Dropshipping
    8. Afiliación
    9. Infoproductos y E-Learning
    10. Otros

    UNIDAD DIDÁCTICA 5. PLAN DE TRANSFORMACIÓN DIGITAL

    1. Diagnóstico de la madurez digital de la empresa
    2. Análisis de la innovación en la empresa
    3. Elaboración del roadmap
    4. Provisión de financiación y recursos tecnológicos
    5. Implementación del plan de transformación digital
    6. Seguimiento del plan de transformación digital

    UNIDAD DIDÁCTICA 6. CASOS DE ÉXITO EN LA TRANSFORMACIÓN DIGITAL

    1. BBVA y la empresa inteligente
    2. DKV Salud y #MédicosfrentealCOVID
    3. El Corte Inglés
    4. Cepsa y su apuesta por los servicios cloud de AWS

    UNIDAD DIDÁCTICA 7. EL NUEVO CLIENTE DIGITAL

    1. Rediseñando el customer experience
    2. La transformación de los canales de distribución: omnicanalidad
    3. Plan de marketing digital
    4. Buyer´s Journey
    5. Growth Hacking: estrategia de crecimiento
    6. El nuevo rol del marketing en el funnel de conversión

    UNIDAD DIDÁCTICA 8. NUEVOS MERCADOS, NUEVAS OPORTUNIDADES

    1. Oportunidades de innovación derivadas de la globalización
    2. Como Inventar Mercados a través de la Innovación
    3. Etapas de desarrollo y ciclos de vida
    4. Incorporación al mercado
    5. Metodologías de desarrollo

    UNIDAD DIDÁCTICA 9. LA INNOVACIÓN EN LOS PROCESOS ORGANIZATIVOS

    1. La transformación digital de la cadena de valor
    2. La industria 4.0
    3. Adaptación de la organización a través del talento y la innovación
    4. Modelos de proceso de innovación
    5. Gestión de innovación
    6. Sistema de innovación
    7. Como reinventar las empresas innovando en procesos
    8. Innovación en Procesos a través de las TIC
    9. El Comercio Electrónico: innovar en los canales de distribución
    10. Caso de estudio voluntario: La innovación según Steve Jobs
    11. Caso Helvex: el cambio continuo
    12. La automatización de las empresas: RPA, RBA y RDA

    MÓDULO 2. BIG DATA Y STORYTELLING

    UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL BIG DATA

    1. ¿Qué es Big Data?
    2. La era de las grandes cantidades de información: historia del big data
    3. La importancia de almacenar y extraer información
    4. Big Data enfocado a los negocios
    5. Open data
    6. Información pública
    7. IoT (Internet of Things-Internet de las cosas)

    UNIDAD DIDÁCTICA 2. FUENTES DE DATOS

    1. Definición y relevancia de la selección de las fuentes de datos
    2. Naturaleza de las fuentes de datos Big Data

    UNIDAD DIDÁCTICA 3. OPEN DATA

    1. Definición, Beneficios y Características
    2. Ejemplo de uso de Open Data

    UNIDAD DIDÁCTICA 4. FASES DE UN PROYECTO DE BIG DATA

    1. Diagnóstico inicial
    2. Diseño del proyecto
    3. Proceso de implementación
    4. Monitorización y control del proyecto
    5. Responsable y recursos disponibles
    6. Calendarización
    7. Alcance y valoración económica del proyecto

    UNIDAD DIDÁCTICA 5. BUSINESS INTELLIGENCE Y LA SOCIEDAD DE LA INFORMACIÓN

    1. Definiendo el concepto de Business Intelligence y Sociedad de la Información
    2. Arquitectura de una solución Business Intelligence
    3. Business Intelligence en los departamentos de la empresa
    4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
    5. Sistemas Operacionales y Procesos ETL en un sistema de BI
    6. Ventajas y Factores de Riesgos del Business Intelligence

    UNIDAD DIDÁCTICA 6. PRINCIPALES PRODUCTOS DE BUSINESS INTELLIGENCE

    1. Cuadros de Mando Integrales (CMI)
    2. Sistemas de Soporte a la Decisión (DSS)
    3. Sistemas de Información Ejecutiva (EIS)

    UNIDAD DIDÁCTICA 7. BIG DATA Y MARKETING

    1. Apoyo del Big Data en el proceso de toma de decisiones
    2. Toma de decisiones operativas
    3. Marketing estratégico y Big Data
    4. Nuevas tendencias en management
    5. Ejercicios Prácticos

    UNIDAD DIDÁCTICA 8. DEL BIG DATA AL LINKED OPEN DATA

    1. Concepto de Web Semántica
    2. Linked Data Vs. Big Data
    3. Lenguaje de consulta SPARQL

    UNIDAD DIDÁCTICA 9. INTERNET DE LAS COSAS

    1. Contexto Internet de las Cosas (IoT)
    2. ¿Qué es IoT?
    3. Elementos que componen el ecosistema IoT
    4. Arquitectura IoT
    5. Dispositivos y elementos empleados
    6. Ejemplos de uso
    7. Retos y líneas de trabajo futuras

    UNIDAD DIDÁCTICA 10. STORYTELLING

    1. ¿Qué es el Data Storytelling?
    2. Elementos clave del Data Storytelling
    3. ¿Por qué es importante el Data Storytelling?
    4. ¿Cómo hacer Data Storytelling?

    MÓDULO 3. DATA SCIENCE: ALMACENAMIENTO, ANÁLISIS Y PROCESAMIENTO DE DATOS

    UNIDAD DIDÁCTICA 1.INTRODUCCIÓN A LA CIENCIA DE DATOS

    1. ¿Qué es la ciencia de datos?
    2. Herramientas necesarias para el científico de datos
    3. Data Science & Cloud Computing
    4. Aspectos legales en Protección de Datos

    UNIDAD DIDÁCTICA 2.BASES DE DATOS RELACIONALES

    1. Introducción
    2. El modelo relacional
    3. Lenguaje de consulta SQL
    4. MySQL Una base de datos relacional

    UNIDAD DIDÁCTICA 3. BASES DE DATOS NOSQL Y EL ALMACENAMIENTO ESCALABLE

    1. ¿Qué es una base de datos NoSQL?
    2. Bases de datos Relaciones Vs Bases de datos NoSQL
    3. Tipo de Bases de datos NoSQL Teorema de CAP
    4. Sistemas de Bases de datos NoSQL

    UNIDAD DIDÁCTICA 4. INTRODUCCIÓN A UN SISTEMA DE BASES DE DATOS NOSQL: MONGODB

    1. ¿Qué es MongoDB?
    2. Funcionamiento y uso de MongoDB
    3. Primeros pasos con MongoDB: Instalación y shell de comandos
    4. Creando nuestra primera Base de Datos NoSQL: Modelo e Inserción de Datos
    5. Actualización de datos en MongoDB: Sentencias set y update
    6. Trabajando con índices en MongoDB para optimización de datos
    7. Consulta de datos en MongoDB

    UNIDAD DIDÁCTICA 5. WEKA Y DATA MINING

    1. ¿Qué es Weka?
    2. Técnicas de Data Mining en Weka
    3. Interfaces de Weka
    4. Selección de atributos

    UNIDAD DIDÁCTICA 6. PENTAHO

    1. Una aproximación a PENTAHO
    2. Soluciones que ofrece PENTAHO
    3. MongoDB & PENTAHO
    4. Hadoop & PENTAHO
    5. Weka & PENTAHO

    UNIDAD DIDÁCTICA 7. R COMO HERRAMIENTA PARA BIG DATA

    1. Introducción a R
    2. ¿Qué necesitas?
    3. Tipos de datos
    4. Estadística Descriptiva y Predictiva con R
    5. Integración de R en Hadoop

    UNIDAD DIDÁCTICA 8. PRE-PROCESAMIENTO & PROCESAMIENTO DE DATOS

    1. Obtención y limpieza de los datos (ETL)
    2. Inferencia estadística
    3. Modelos de regresión
    4. Pruebas de hipótesis

    UNIDAD DIDÁCTICA 9. ANÁLISIS DE LOS DATOS

    1. Inteligencia Analítica de negocios
    2. La teoría de grafos y el análisis de redes sociales
    3. Presentación de resultados

    MÓDULO 4. ANÁLISIS DE DATOS CON PYTHON

    UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL ANÁLISIS DE DATOS

    1. ¿Qué es el análisis de datos?

    UNIDAD DIDÁCTICA 2. LIBRERÍAS PARA EL ANÁLISIS DE DATOS: NUMPY, PANDAS Y MATPLOTLIB

    1. Análisis de datos con NumPy
    2. Pandas
    3. Matplotlib

    UNIDAD DIDÁCTICA 3. FILTRADO Y EXTRACCIÓN DE DATOS

    1. Cómo usar loc en Pandas
    2. Cómo eliminar una columna en Pandas

    UNIDAD DIDÁCTICA 4. PIVOT TABLES

    1. Pivot tables en pandas

    UNIDAD DIDÁCTICA 5. GROUPBY Y FUNCIONES DE AGREGACIÓN

    1. El grupo de pandas

    UNIDAD DIDÁCTICA 6. FUSIÓN DE DATAFRAMES

    1. Python Pandas fusionando marcos de datos

    UNIDAD DIDÁCTICA 7. VISUALIZACIÓN DE DATOS CON MATPLOTLIB Y CON SEABORN

    1. Matplotlib
    2. Seaborn

    UNIDAD DIDÁCTICA 8. INTRODUCCIÓN AL MACHINE LEARNING

    1. Aprendizaje automático

    UNIDAD DIDÁCTICA 9. REGRESIÓN LINEAL Y REGRESIÓN LOGÍSTICA

    1. Regresión lineal
    2. Regresión logística

    UNIDAD DIDÁCTICA 10. ÁRBOL DE DECISIONES

    1. Estructura de árbol

    UNIDAD DIDÁCTICA 11. NAIVE BAYES

    1. Algortimo de Naive bayes
    2. Tipos de Naive Bayes

    UNIDAD DIDÁCTICA 12. SUPPORT VECTOR MACHINES (SVM)

    1. Máquinas de vectores soporte (Support Vector Machine-SVM)
    2. ¿Cómo funciona SVM?
    3. Núcleos SVM
    4. Construcción de clasificador en Scikit-learn

    UNIDAD DIDÁCTICA 13. KNN

    1. K-nearest Neighbors (KNN)
    2. Implementación de Python del algoritmo KNN

    UNIDAD DIDÁCTICA 14. PRINCIPAL COMPONENT ANALYSIS (PCA)

    1. Análisis de componentes principales

    UNIDAD DIDÁCTICA 15. RANDOM FOREST

    1. Algorimto de Random Forest

    MÓDULO 5. DATA MINING, APRENDIZAJE AUTOMÁTICO Y MACHINE LEARNING

    UNIDAD DIDÁCTICA 1. MINERÍA DE DATOS O DATA MINING Y EL APRENDIZAJE AUTOMÁTICO

    1. Introducción a la minería de datos y el aprendizaje automático
    2. Proceso KDD
    3. Modelos y Técnicas de Data Mining
    4. Áreas de aplicación
    5. Minería de textos y Web Mining
    6. Data mining y marketing

    UNIDAD DIDÁCTICA 2. EL CICLO DE DATA MINING: FASES Y TIPOS DE PROBLEMAS

    1. Tipos de problemas
    2. Implicaciones de los datos, dominios, técnicas en las fases del proceso
    3. Casos de uso

    UNIDAD DIDÁCTICA 3. TÉCNICAS DE DATA MINING

    1. Clasificación o Arboles de decisión o Naive Bayes
    2. Clustering o K-means o EM
    3. Asociacion o A priori

    UNIDAD DIDÁCTICA 4. ECOSISTEMA HADOOP

    1. ¿Qué es Hadoop? Relación con Big Data
    2. Instalación y configuración de insfraestructura y ecosistema Hadoop
    3. Sistema de archivos HDFS
    4. MapReduce con Hadoop
    5. Apache Hive
    6. Apache Hue
    7. Apache Spark

    UNIDAD DIDÁCTICA 5. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL

    1. Introducción a la inteligencia artificial
    2. Historia
    3. La importancia de la IA

    UNIDAD DIDÁCTICA 6. ALGORITMOS APLICADOS A LA INTELIGENCIA ARTIFICIAL

    1. Algoritmos aplicados a la inteligencia artificial

    UNIDAD DIDÁCTICA 7. RELACIÓN ENTRE INTELIGENCIA ARTIFICIAL Y BIG DATA

    1. Relación entre inteligencia artificial y big data
    2. IA y Big Data combinados
    3. El papel del Big Data en IA
    4. Tecnologías de IA que se están utilizando con Big Data

    UNIDAD DIDÁCTICA 8. SISTEMAS EXPERTOS

    1. Sistemas expertos
    2. Estructura de un sistema experto
    3. Inferencia: Tipos
    4. Fases de construcción de un sistema
    5. Rendimiento y mejoras
    6. Dominios de aplicación
    7. Creación de un sistema experto en C#
    8. Añadir incertidumbre y probabilidades

    UNIDAD DIDÁCTICA 9. INTRODUCCIÓN AL MACHINE LEARNING

    1. Introducción
    2. Clasificación de algoritmos de aprendizaje automático
    3. Ejemplos de aprendizaje automático
    4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
    5. Tipos de algoritmos de aprendizaje automático
    6. El futuro del aprendizaje automático

    UNIDAD DIDÁCTICA 10. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING

    1. Introducción
    2. Algoritmos

    UNIDAD DIDÁCTICA 11. SISTEMAS DE RECOMENDACIÓN

    1. Introducción
    2. Filtrado colaborativo
    3. Clusterización
    4. Sistemas de recomendación híbridos

    UNIDAD DIDÁCTICA 12. CLASIFICACIÓN

    1. Clasificadores
    2. Algoritmos

    UNIDAD DIDÁCTICA 13. REDES NEURONALES Y DEEP LEARNING

    1. Componentes
    2. Aprendizaje

    UNIDAD DIDÁCTICA 14. SISTEMAS DE ELECCIÓN

    1. Introducción
    2. El proceso de paso de DSS a IDSS
    3. Casos de aplicación

    MÓDULO 6. VISUALIZACIÓN DE DATOS

    UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA VISUALIZACIÓN DE DATOS

    1. ¿Qué es la visualización de datos?
    2. Importancia y herramientas de la visualización de datos
    3. Visualización de datos: Principios básicos

    UNIDAD DIDÁCTICA 2. TABLEAU

    1. ¿Qué es Tableau? Usos y aplicaciones
    2. Tableau Server: Arquitectura y Componentes
    3. Instalación Tableau
    4. Espacio de trabajo y navegación
    5. Conexiones de datos en Tableau
    6. Tipos de filtros en Tableau
    7. Ordenación de datos, grupos, jerarquías y conjuntos
    8. Tablas y gráficos en Tableau

    UNIDAD DIDÁCTICA 3. D3 (DATA DRIVEN DOCUMENTS)

    1. Fundamentos D3
    2. Instalación D3
    3. Funcionamiento D3
    4. SVG
    5. Tipos de datos en D3
    6. Diagrama de barras con D3
    7. Diagrama de dispersión con D3

    UNIDAD DIDÁCTICA 4. LOOKER STUDIO (GOOGLE DATA STUDIO)

    1. Visualización de datos
    2. Tipologías de gráficos
    3. Fuentes de datos
    4. Creación de informes

    UNIDAD DIDÁCTICA 5. QLIKVIEW

    1. Instalación y arquitectura
    2. Carga de datos
    3. Informes
    4. Transformación y modelo de datos
    5. Análisis de datos

    UNIDAD DIDÁCTICA 6. POWER BI

    1. Introducción a Power BI
    2. Instalación de Power BI
    3. Modelado de datos
    4. Visualización de datos
    5. Dashboards
    6. Uso compartido de datos

    UNIDAD DIDÁCTICA 7. CARTO

    1. CartoDB
    2. ¿Qué es CARTO?
    3. Carga y uso de datos. Tipos de análisis
    4. Programación de un visor con la librería CARTO.js
    5. Uso de ejemplos y ayudas de la documentación de la API

    MÓDULO 7. VISUALIZACIÓN DE DATOS EN R CON GGPLOT2

    UNIDAD DIDÁCTICA 1. GGPLOT2 COMO LIBRERÍA PARA VISUALIZACIÓN DE DATOS EN R

    1. Introducción a Gplot
    2. El paquete ggplot2

    UNIDAD DIDÁCTICA 2. EJES

    1. Cambiar títulos de eje
    2. Aumentar el espacio entre ejes y títulos de ejes
    3. Cambiar la estética de los títulos de Axis
    4. Cambiar la estética del texto del eje
    5. Texto del eje de rotación
    6. Eliminar texto de eje y marcas
    7. Eliminar títulos de eje
    8. Límite del rango del eje
    9. Forzar el trazado para que comience en el origen
    10. Ejes con la misma escala
    11. Usar una función para modificar etiquetas

    UNIDAD DIDÁCTICA 3. TÍTULOS

    1. Añade un título
    2. Ajustar la posición de los títulos
    3. Use una fuente no tradicional en su título
    4. Cambiar espaciado en texto de varias líneas

    UNIDAD DIDÁCTICA 4. LEYENDAS

    1. Trabajando con leyendas
    2. Apaga la leyenda
    3. Eliminar títulos de leyenda
    4. Cambiar la posición de la leyenda
    5. Cambiar la dirección de la leyenda
    6. Cambiar el estilo del título de la leyenda
    7. Cambiar título de leyenda
    8. Cambiar el orden de las claves de leyenda
    9. Cambiar etiquetas de leyenda
    10. Cambiar cuadros de fondo en la leyenda
    11. Cambiar el tamaño de los símbolos de leyenda
    12. Dejar una capa fuera de la leyenda
    13. Adición manual de elementos de leyenda
    14. Usar otros estilos de leyenda

    UNIDAD DIDÁCTICA 5. FONDOS Y LÍNEAS DE CUADRÍCULA

    1. Cambiar el color de fondo del panel
    2. Cambiar líneas de cuadrícula
    3. Cambiar el espaciado de las líneas de cuadrícula
    4. Cambiar el color de fondo de la trama

    UNIDAD DIDÁCTICA 6. MÁRGENES

    1. Trabajar con márgenes

    UNIDAD DIDÁCTICA 7. GRÁFICOS DE PANELES MÚLTIPLES

    1. Trabajar con gráficos de paneles múltiples
    2. Crear múltiplos pequeños basados en una variable
    3. Permitir que los ejes deambulen libremente
    4. Uso facet_wrapcon dos variables
    5. Modificar el estilo de los textos de la tira
    6. Crear un panel de diferentes parcelas

    UNIDAD DIDÁCTICA 8. COLORES

    1. Trabajar con colores
    2. Especificar colores individuales
    3. Asignar colores a las variables
    4. Variables Cualitativas
    5. Seleccionar manualmente colores cualitativos
    6. Utilice paletas de colores cualitativas integradas
    7. Use paletas de colores cualitativos de paquetes de extensión
    8. Variables Cuantitativas
    9. La paleta de colores Viridis
    10. Usar paletas de colores cuantitativas de paquetes de extensión
    11. Modificar paletas de colores después

    UNIDAD DIDÁCTICA 9. TEMAS

    1. Cambiar el estilo de trazado general
    2. Cambiar la fuente de todos los elementos de texto
    3. Cambiar el tamaño de todos los elementos de texto
    4. Cambiar el tamaño de todos los elementos de línea y rectángulo
    5. Crea tu propio tema
    6. Actualizar el tema actual

    UNIDAD DIDÁCTICA 10. LÍNEAS

    1. Agregar líneas horizontales o verticales a un gráfico
    2. Agregar una línea dentro de un gráfico
    3. Agregar líneas curvas y flechas a un gráfico

    UNIDAD DIDÁCTICA 11. TEXTO

    1. Agregue etiquetas
    2. Agregar anotaciones de texto
    3. Use Markdown y HTML Rendering para anotaciones

    UNIDAD DIDÁCTICA 12. COORDENADAS

    1. Voltear una parcela
    2. arreglar un eje
    3. Invertir un eje
    4. Transformar un eje
    5. Circularizar una parcela

    UNIDAD DIDÁCTICA 13. TIPOS DE GRÁFICOS

    1. Alternativas a un diagrama de caja
    2. Crear una representación de alfombra en un gráfico
    3. Crear una matriz de correlación
    4. Crear un gráfico de contorno
    5. Crear un mapa de calor
    6. Crear un diagrama de cresta

    UNIDAD DIDÁCTICA 14. CINTAS

    1. Trabajar con cintas (AUC, CI, etc.)

    UNIDAD DIDÁCTICA 15. SUAVIZADOS

    1. Predeterminado: agregar un suavizado LOESS o GAM

    UNIDAD DIDÁCTICA 16. GRÁFICOS INTERACTIVOS

    1. Trabajar con gráficos interactivos

    MÓDULO 8. ANALÍTICA WEB

    UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA ANALÍTICA WEB

    1. ¿Qué es la analítica web?
    2. Establecimiento de objetivos y KPIs
    3. Métricas principales y avanzadas
    4. Objetivos y ventajas de medir
    5. Plan de medición

    UNIDAD DIDÁCTICA 2. GOOGLE ANALYTICS 4

    1. Introducción a Google Analytics 4
    2. Interfaz
    3. Métricas y dimensiones
    4. Informes básicos
    5. Filtros
    6. Segmentos
    7. Eventos
    8. Informes personalizados
    9. Comportamiento de los usuarios e interpretación de datos

    UNIDAD DIDÁCTICA 3. GOOGLE TAG MANAGER

    1. Introducción a GTM
    2. Implementación con GTM
    3. Medición con GTM
    4. Uso de Debug/Preview Mode

    UNIDAD DIDÁCTICA 4. MODELOS DE ATRIBUCIÓN

    1. La atribución
    2. Multicanalidad
    3. Customer Journey
    4. Principales modelos de atribución
    5. Modelos de atribución personalizados

    UNIDAD DIDÁCTICA 5. CREACIÓN DE DASHBORAD CON GOOGLE DATA STUDIO

    1. Planificación del Dashboard
    2. Características del Dashboard
    3. Introducción a Data Studio
    4. Conectores
    5. Tipos de gráficos
    6. Personalización de informes
    7. Elementos de control
    8. Dimensiones y métricas
    9. Campos Calculados
    10. Compartir informes

    UNIDAD DIDÁCTICA 6. ANALÍTICA WEB ORIENTADA AL SEO

    1. Introducción al SEO
    2. Historia de los motores de búsqueda
    3. Componentes de un motor de búsqueda
    4. Organización de resultados en un motor de búsqueda
    5. La importancia del contenido
    6. El concepto de autoridad en Internet
    7. Campaña SEO

    UNIDAD DIDÁCTICA 7. ANALÍTICA WEB ORIENTADA AL SEM

    1. Introducción al SEM
    2. Principales conceptos en SEM
    3. Sistema de pujas y Calidad del anuncio
    4. Primer contacto con Google Ads
    5. Creación de anuncios con calidad
    6. Indicadores clave de rendimiento en SEM

    UNIDAD DIDÁCTICA 8. ANALÍTICA WEB ORIENTADA A LAS REDES SOCIALES

    1. Análisis del tráfico en redes sociales
    2. Fijar objetivos en redes sociales
    3. Facebook
    4. Twitter
    5. Youtube
    6. LinkedIn
    7. Tik tok
    8. Instagram

    UNIDAD DIDÁCTICA 9. TÉCNICAS Y ESTRATEGIAS

    1. Usabilidad
    2. Mapas de calor
    3. Grabaciones de sesiones de usuario
    4. Ordenación de tarjetas
    5. Test A/B
    6. Test multivariante
    7. KPI, indicadores clave de rendimiento
    8. Cambios a realizar para optimizar una página web

    UNIDAD DIDÁCTICA 10. OTRAS HERRAMIENTAS PARA ANALÍTICA WEB

    1. Hotjar
    2. Microsoft Power BI
    3. Google Search Console
    4. Matomo
    5. Awstats
    6. Chartbeat
    7. Adobe Analytics

    UNIDAD DIDÁCTICA 11. COOKIES Y TECNOLOGÍAS DE SEGUIMIENTO

    1. ¿Qué son las cookies?
    2. Tipos de cookies
    3. GDPR
    4. Herramientas para manejar el consentimiento de cookies

    MÓDULO 9. PROYECTO FIN DE MÁSTER (PFM)

    Titulación
    Titulación Universitaria:
    Diploma Universidad Católica de Murcia
    Solicitar información