Máster en Formación Permanente en Deep Learning y Big Data
100% Online
12 meses
2195€
Máster en Formación Permanente en Deep Learning y Big Data
    Máster en Formación Permanente en Deep Learning y Big Data

    Máster en Formación Permanente en Deep Learning y Big Data

    100% Online
    60 ECTS
    12 meses
    2195€
    Seguridad y confianza en tus pagos online.

    Presentación

    Estamos en una etapa de cambio tecnológico. Dia a día crece la cantidad de información que generamos y cada vez se ven más avances en la automatización de tareas y en la creación de modelos artificiales inteligentes dentro de empresas, páginas web, aplicaciones, etc. Todo esto hace que la importancia de saber analizar estos grandes volúmenes de datos, conocidos como Big Data, se convierta en trascendental para tomar cualquier decisión importante dentro de una empresa, ámbito social o cualquier otro campo profesional. Saber cómo interpretar todos estos grandes volúmenes de información y aplicarlo en campos como la inteligencia artificial, el machine learning y el deep learning se vuelve clave para llevar a cabo una actualización tecnológica dentro de cualquier empresa. Gracias a la realización de este Master en Formación Permanente en Deep Learning y Big Data podrás obtener los conocimientos necesarios para el análisis de datos masivos y su aplicación en el ámbito de la inteligencia artificial (IA) gracias al aprendizaje profundo (Deep Learning). Además, descubrirás un mundo lleno de oportunidades laborales y en pleno auge debido a la cada vez mayor importancia del procesamiento de lenguaje natural (PLN) y el desarrollo de chatbots.
    Qs World University Rankings

    Universidades colaboradoras

    Para qué te prepara
    El Master en Formación Permanente en Deep Learning y Big Data, te otorgará los conocimientos necesarios para el análisis de datos masivos o big data y de su aplicación en el ámbito de la inteligencia artificial (IA) gracias al aprendizaje profundo (Deep Learning). Descubrirás un mundo lleno de oportunidades laborales y en pleno auge debido a la cada vez mayor importancia del procesamiento de lenguaje natural (PLN) y el desarrollo de chatbots.
    Objetivos
    - Descubrir la importancia del Big Data y sus principales aplicaciones. - Aprender a utilizar las principales herramientas de Big Data. - Comprender la importancia y actualidad de la inteligencia artificial y su aplicación para construir sistemas inteligentes gracias al machine learning y el deep learning. - Desarrollar un sistema de Deep Learning. - Aprender a crear un chatbot gracias al uso del procesamiento de lenguaje natural. - Entender la importancia y saber aplicar la ciberseguridad en todos estos ámbitos.
    A quién va dirigido
    El Master en Formación Permanente en Deep Learning y Big Data, está principalmente orientado a profesionales informáticos que deseen dar un salto de calidad en sus carreras gracias al estudio y aplicación del Big Data en áreas como la inteligencia artificial, el Machine Learning y el Deep Learning que cada vez tiene mayor importancia en todas las tecnologías actuales y futuras. Además, también está pensado para aquellos estudiantes que busquen una formación especializada que les ayude a adentrase en el mercado laboral a través de sus prácticas garantizadas.
    Salidas Profesionales
    Gracias a la realización de este máster podrás a optar a puestos de gran prestigio y muy bien remunerados tales como Big Data Scientist, Responsable de inteligencia artificial, AI Developer, Research Scientist on Deep Learning, Experto analista de datos, data engineer o líder de proyectos big data.
    Temario

    MÓDULO 1. BIG DATA INTRODUCTION

    UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL BIG DATA

    1. ¿Qué es Big Data?
    2. La era de las grandes cantidades de información. Historia del big data
    3. La importancia de almacenar y extraer información
    4. Big Data enfocado a los negocios
    5. Open Data
    6. Información pública
    7. IoT (Internet of Things-Internet de las cosas)

    UNIDAD DIDÁCTICA 2. FUENTES DE DATOS

    1. Definición y relevancia de la selección de las fuentes de datos
    2. Naturaleza de las fuentes de datos Big Data

    UNIDAD DIDÁCTICA 3. OPEN DATA

    1. Definición, Beneficios y Características
    2. Ejemplo de uso de Open Data

    UNIDAD DIDÁCTICA 4. FASES DE UN PROYECTO DE BIG DATA

    1. Diagnóstico inicial
    2. Diseño del proyecto
    3. Proceso de implementación
    4. Monitorización y control del proyecto
    5. Responsable y recursos disponibles
    6. Calendarización
    7. Alcance y valoración económica del proyecto

    UNIDAD DIDÁCTICA 5. BUSINESS INTELLIGENCE Y LA SOCIEDAD DE LA INFORMACIÓN

    1. Definiendo el concepto de Business Intelligence y sociedad de la información
    2. Arquitectura de una solución de Business Intelligence
    3. Business Intelligence en los departamentos de la empresa
    4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
    5. Sistemas operacionales y Procesos ETL en un sistema de BI
    6. Ventajas y Factores de Riesgos del Business Intelligence

    UNIDAD DIDÁCTICA 6. PRINCIPALES PRODUCTOS DE BUSINESS INTELLIGENCE

    1. Cuadros de Mando Integrales (CMI)
    2. Sistemas de Soporte a la Decisión (DSS)
    3. Sistemas de Información Ejecutiva (EIS)

    UNIDAD DIDÁCTICA 7. BIG DATA Y MARKETING

    1. Apoyo del Big Data en el proceso de toma de decisiones
    2. Toma de decisiones operativas
    3. Marketing estratégico y Big Data
    4. Nuevas tendencias en management

    UNIDAD DIDÁCTICA 8. DEL BIG DATA AL LINKED OPEN DATA

    1. Concepto de web semántica
    2. Linked Data Vs Big Data
    3. Lenguaje de consulta SPARQL

    UNIDAD DIDÁCTICA 9. INTERNET DE LAS COSAS

    1. Contexto Internet de las Cosas (IoT)
    2. ¿Qué es IoT?
    3. Elementos que componen el ecosistema IoT
    4. Arquitectura IoT
    5. Dispositivos y elementos empleados
    6. Ejemplos de uso
    7. Retos y líneas de trabajo futuras

    MÓDULO 2. ARQUITECTURA BIG DATA

    UNIDAD DIDÁCTICA 1. BATCH PROCESSING

    1. Hadoop
    2. Pig
    3. Hive
    4. Sqoop
    5. Flume
    6. Spark Core
    7. Spark 2.0

    UNIDAD DIDÁCTICA 2. STREAMING PROCESSING

    1. Fundamentos de Streaming Processing
    2. Spark Streaming
    3. Kafka
    4. Pulsar y Apache Apex
    5. Implementación de un sistema real-time

    UNIDAD DIDÁCTICA 3. SISTEMAS NOSQL

    1. Hbase
    2. Cassandra
    3. MongoDB
    4. NeoJ
    5. Redis
    6. Berkeley DB

    UNIDAD DIDÁCTICA 4. INTERACTIVE QUERY

    1. Lucene + Solr

    UNIDAD DIDÁCTICA 5. SISTEMAS DE COMPUTACIÓN HÍBRIDOS

    1. Arquitectura Lambda
    2. Arquitectura Kappa
    3. Apache Flink e implementaciones prácticas
    4. Druid
    5. ElasticSearch
    6. Logstash
    7. Kibana

    UNIDAD DIDÁCTICA 6. CLOUD COMPUTING

    1. Amazon Web Services
    2. Google Cloud Platform

    UNIDAD DIDÁCTICA 7. ADMINISTRACIÓN DE SISTEMAS BIG

    1. Administración e Instalación de clusters: Cloudera y Hortonworks
    2. Optimización y monitorización de servicios
    3. Seguridad: Apache Knox, Ranger y Sentry

    UNIDAD DIDÁCTICA 8. VISUALIZACIÓN DE DATOS

    1. Herramientas de visualización: Tableau y CartoDB
    2. Librerías de Visualización: D, Leaflet, Cytoscape

    MÓDULO 3. TECNOLOGÍAS APLICADAS A BUSINESS INTELLIGENCE

    UNIDAD DIDÁCTICA 1. MINERÍA DE DATOS O DATA MINING Y EL APRENDIZAJE AUTOMÁTICO

    1. Introducción a la minería de datos y el aprendizaje automático
    2. Proceso KDD
    3. Modelos y Técnicas de Data Mining
    4. Áreas de aplicación
    5. Minería de textos y Web Mining
    6. Data mining y marketing

    UNIDAD DIDÁCTICA 2. DATAMART. CONCEPTO DE BASE DE DATOS DEPARTAMENTAL

    1. Aproximación al concepto de DataMart
    2. Bases de datos OLTP
    3. Bases de Datos OLAP
    4. MOLAP, ROLAP & HOLAP
    5. Herramientas para el desarrollo de cubos OLAP

    UNIDAD DIDÁCTICA 3. DATAWAREHOUSE O ALMACÉN DE DATOS CORPORATIVOS

    1. Visión General. ¿Por qué DataWarehouse?
    2. Estructura y Construcción
    3. Fases de implantación
    4. Características
    5. Data Warehouse en la nube

    UNIDAD DIDÁCTICA 4. INTELIGENCIA DE NEGOCIO Y HERRAMIENTAS DE ANALÍTICA

    1. Tipos de herramientas para BI
    2. Productos comerciales para BI
    3. Productos Open Source para BI
    4. Beneficios de las herramientas de BI

    UNIDAD DIDÁCTICA 5. HERRAMIENTA POWERBI

    UNIDAD DIDÁCTICA 6. HERRAMIENTA TABLEAU

    UNIDAD DIDÁCTICA 7. HERRAMIENTA QLIKVIEW

    MÓDULO 4. HERRAMIENTAS PARA EXPLOTACIÓN Y ANÁLISIS DE BIG DATA

    UNIDAD DIDÁCTICA 1. BASES DE DATOS NOSQL Y EL ALMACENAMIENTO ESCALABLE

    1. ¿Qué es una base de datos NoSQL?
    2. Bases de datos Relaciones Vs Bases de datos NoSQL
    3. Tipo de Bases de datos NoSQL: Teorema de CAP
    4. Sistemas de Bases de datos NoSQL

    UNIDAD DIDÁCTICA 2. INTRODUCCIÓN A UN SISTEMA DE BASES DE DATOS NOSQL: MONGODB

    1. ¿Qué es MongoDB?
    2. Funcionamiento y uso de MongoDB
    3. Primeros pasos con MongoDB: Instalación y shell de comandos
    4. Creando nuestra primera Base de Datos NoSQL: Modelo e Inserción de Datos
    5. Actualización de datos en MongoDB: Sentencias set y update
    6. Trabajando con índices en MongoDB para optimización de datos
    7. Consulta de datos en MongoDB

    UNIDAD DIDÁCTICA 3. ECOSISTEMA HADOOP

    1. ¿Qué es Hadoop? Relación con Big Data
    2. Instalación y configuración de insfraestructura y ecosistema Hadoop
    3. Sistema de archivos HDFS
    4. MapReduce con Hadoop
    5. Apache Hive
    6. Apache Hue
    7. Apache Spark

    UNIDAD DIDÁCTICA 4. WEKA Y DATA MINING

    1. ¿Qué es Weka?
    2. Técnicas de Data Mining en Weka
    3. Interfaces de Weka
    4. Selección de atributos

    UNIDAD DIDÁCTICA 5. PENTAHO UNA SOLUCIÓN OPEN SOURCE PARA BUSINESS INTELLIGENCE

    1. Una aproximación a Pentaho
    2. Soluciones que ofrece Pentaho
    3. MongoDB & Pentaho
    4. Hadoop & Pentaho
    5. Weka & Pentaho

    MÓDULO 5. INTELIGENCIA ARTIFICIAL (IA), MACHINE LEARNING (ML) Y DEEP LEARNING (DL)

    UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL

    1. Introducción a la inteligencia artificial
    2. Historia
    3. La importancia de la IA

    UNIDAD DIDÁCTICA 2. TIPOS DE INTELIGENCIA ARTIFICIAL

    1. Tipos de inteligencia artificial

    UNIDAD DIDÁCTICA 3. ALGORITMOS APLICADOS A LA INTELIGENCIA ARTIFICIAL

    1. Algoritmos aplicados a la inteligencia artificial

    UNIDAD DIDÁCTICA 4. RELACIÓN ENTRE INTELIGENCIA ARTIFICIAL Y BIG DATA

    1. Relación entre inteligencia artificial y big data
    2. IA y Big Data combinados
    3. El papel del Big Data en IA
    4. Tecnologías de IA que se están utilizando con Big Data

    UNIDAD DIDÁCTICA 5. SISTEMAS EXPERTOS

    1. Sistemas expertos
    2. Estructura de un sistema experto
    3. Inferencia: Tipos
    4. Fases de construcción de un sistema
    5. Rendimiento y mejoras
    6. Dominios de aplicación
    7. Creación de un sistema experto en C#
    8. Añadir incertidumbre y probabilidades

    UNIDAD DIDÁCTICA 6. FUTURO DE LA INTELIGENCIA ARTIFICIAL

    1. Futuro de la inteligencia artificial
    2. Impacto de la IA en la industria
    3. El impacto económico y social global de la IA y su futuro

    UNIDAD DIDÁCTICA 7. INTRODUCCIÓN AL MACHINE LEARNING

    1. Introducción
    2. Clasificación de algoritmos de aprendizaje automático
    3. Ejemplos de aprendizaje automático
    4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
    5. Tipos de algoritmos de aprendizaje automático
    6. El futuro del aprendizaje automático

    UNIDAD DIDÁCTICA 8. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING

    1. Introducción
    2. Algoritmos

    UNIDAD DIDÁCTICA 9. SISTEMAS DE RECOMENDACIÓN

    1. Introducción
    2. Filtrado colaborativo
    3. Clusterización
    4. Sistemas de recomendación híbridos

    UNIDAD DIDÁCTICA 10. CLASIFICACIÓN

    1. Clasificadores
    2. Algoritmos

    UNIDAD DIDÁCTICA 11. REDES NEURONALES Y DEEP LEARNING

    1. Componentes
    2. Aprendizaje

    UNIDAD DIDÁCTICA 12. SISTEMAS DE ELECCIÓN

    1. Introducción
    2. El proceso de paso de DSS a IDSS
    3. Casos de aplicación

    UNIDAD DIDÁCTICA 13. DEEP LEARNING CON PYTHON, KERAS Y TENSORFLOW

    1. Aprendizaje profundo
    2. Entorno de Deep Learning con Python
    3. Aprendizaje automático y profundo

    UNIDAD DIDÁCTICA 14. SISTEMAS NEURONALES

    1. Redes neuronales
    2. Redes profundas y redes poco profundas

    UNIDAD DIDÁCTICA 15. REDES DE UNA SOLA CAPA

    1. Perceptrón de una capa y multicapa
    2. Ejemplo de perceptrón

    UNIDAD DIDÁCTICA 16. REDES MULTICAPA

    1. Tipos de redes profundas
    2. Trabajar con TensorFlow y Python

    UNIDAD DIDÁCTICA 17. ESTRATEGIAS DE APRENDIZAJE

    1. Entrada y salida de datos
    2. Entrenar una red neuronal
    3. Gráficos computacionales
    4. Implementación de una red profunda
    5. El algoritmo de propagación directa
    6. Redes neuronales profundas multicapa

    MÓDULO 6. PROCESAMIENTO DE LENGUAJE NATURAL (PLN)

    UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL PLN

    1. ¿Qué es PLN?
    2. ¿Qué incluye el PLN?
    3. Ejemplos de uso de PLN
    4. Futuro del PLN

    UNIDAD DIDÁCTICA 2. RECURSOS PARA EL PLN

    1. Introducción a Python
    2. ¿Qué necesitas?
    3. Librerías para el análisis de datos en Python
    4. PLN en Python con la librería NLTK
    5. Otras herramientas para PLN

    UNIDAD DIDÁCTICA 3. COMPUTACIÓN DE LA SINTAXIS PARA EL PLN

    1. Principios del análisis sintáctico
    2. Gramática libre de contexto
    3. Analizadores sintácticos (Parsers)

    UNIDAD DIDÁCTICA 4. COMPUTACIÓN DE LA SEMÁNTICA PARA EL PLN

    1. Aspectos introductorios del análisis semántico
    2. Lenguaje semántico para PLN
    3. Análisis pragmático

    UNIDAD DIDÁCTICA 5. RECUPERACIÓN Y EXTRACCIÓN DE LA INFORMACIÓN

    1. Aspectos introductorios
    2. Pasos en la extracción de información
    3. Ejemplo PLN
    4. Ejemplo PLN con entrada de texto en inglés

    MÓDULO 7. CHATBOTS E INTELIGENCIA ARTIFICIAL

    UNIDAD DIDÁCTICA 1 .¿QUÉ ES LA INTELIGENCIA ARTIFICIAL?

    1. Introducción a la Inteligencia artificial
    2. El Test de Turing
    3. Agentes Inteligentes
    4. Aplicaciones de la inteligencia artificial

    UNIDAD DIDÁCTICA 2. ¿QUÉ ES UN CHATBOT?

    1. Aspectos introductorios
    2. ¿Qué es un chatbot?
    3. ¿Cómo funciona un chatbot?
    4. VoiceBots
    5. Desafios para los Chatbots

    UNIDAD DIDÁCTICA 3. RELACIÓN ENTRE IA Y CHATBOTS

    1. Chatbots y el papel de la Inteligencia Artificial (IA)
    2. Usos y beneficios de los chatbots
    3. Diferencia entre bots, chatbots e IA

    UNIDAD DIDÁCTICA 4. ÁMBITOS DE APLICACIÓN CHATBOTS

    1. Áreas de aplicación de Chatbots
    2. Desarrollo de un chatbot con ChatterBot y Python
    3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel

    MÓDULO 8. CIBERSEGURIDAD APLICADA A INTELIGENCIA ARTIFICIAL (IA), SMARTPHONES, INTERNET DE LAS COSAS (IOT) E INDUSTRIA 4.0

    UNIDAD DIDÁCTICA 1. CIBERSEGURIDAD EN NUEVAS TECNOLOGÍAS

    1. Concepto de seguridad TIC
    2. Tipos de seguridad TIC
    3. Aplicaciones seguras en Cloud
    4. Plataformas de administración de la movilidad empresarial (EMM)
    5. Redes WiFi seguras
    6. Caso de uso: Seguridad TIC en un sistema de gestión documental

    UNIDAD DIDÁCTICA 2. CIBERSEGURIDAD EN SMARTPHONES

    1. Buenas prácticas de seguridad móvil
    2. Protección de ataques en entornos de red móv

    UNIDAD DIDÁCTICA 3. INTELIGENCIA ARTIFICIAL (IA) Y CIBERSEGURIDAD

    1. Inteligencia Artificial
    2. Tipos de inteligencia artificial
    3. Impacto de la Inteligencia Artificial en la ciberseguridad

    UNIDAD DIDÁCTICA 4. CIBERSEGURIDAD E INTERNET DE LAS COSAS (IOT)

    1. Contexto Internet de las Cosas (IoT)
    2. ¿Qué es IoT?
    3. Elementos que componen el ecosistema IoT
    4. Arquitectura IoT
    5. Dispositivos y elementos empleados
    6. Ejemplos de uso
    7. Retos y líneas de trabajo futuras
    8. Vulnerabilidades de IoT
    9. Necesidades de seguridad específicas de IoT

    UNIDAD DIDÁCTICA 5. SEGURIDAD INFORMÁTICA EN LA INDUSTRIA 4.0

    1. Industria 4.0
    2. Necesidades en ciberseguridad en la Industria 4.0

    MÓDULO 9. PROYECTO FIN E MÁSTER

    Titulación
    Titulación Universitaria:
    Diploma Universidad Católica de Murcia
    Solicitar información